

GHR002 Methodology for Assessing Methane Recovery from Anaerobic Digestion of Manure to Produce Biogas

Published September 2024 - Version 1.0

© 2024. Global Heat Reduction Initiative, a program of Scientific Certification Systems Inc.

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.

Contents

1.	In	ntroduction	1
2.		Methodology Overview	1
	2.1	Methodology Description	1
	2.2	Project Activities Covered by the Methodology	1
	2.3	Eligibility Requirements for Projects under the Methodology	1
	2.4	Geographic Scope	2
3.	М	ateriality, Additionality, Permanence and Secondary Effects	2
	3.1	Materiality	2
	3.2	Additionality Considerations	2
	3.3	Permanence	3
	3.4	Risk of Secondary Effects	3
4.		Baseline and Project Scenario Descriptions	4
	4.1	Baseline Scenario	
	4.2	Project Scenario	4
	4.3	Group Project Scenario	4
5.		Project Boundaries	5
	5.1	Boundaries for Assessing Radiative Forcing, Radiative Forcing Reduction, Co-benefits, and Trade-offs	5
	5.2	Sources, Sinks, and Reservoirs of Radiative Forcing	5
6.		Quantification	6
	6.1	Types of Data Required, Accepted Data Sources, and Calculation Methods	
	6.2	Baseline Scenario Climate Forcer Calculation Methods	6
		2.1 Option A	
	6.3	Project Scenario Climate Forcer Calculation Methods	. 11
	6.4	Determination of the Project's Climate Impact	. 14
	6.5	Conservative Assumptions and Estimates	. 16
	6.6	Methods of Determining Uncertainty	. 17
	6.7	Potential co-benefits, trade-offs, and Sustainable Development Goals (SDGs)	. 17
7.		Reporting Requirements	.19
	7.1	Project Design Document (PDD)	. 19
	7.2	Documentation and Monitoring	. 20

7.3	Monitoring Report	21
7.4	Monitoring Period	21
7.5	Project Validation and Verification	21
8.	CREDITING	22
8.1	Credit Issuance	22
8.2	Crediting Period	22
8.3	Buffer Pool Requirements	22
Glossary	γ	23
Annond	dix A: Monitored Data and Parameters	2/
	dix B. Project Risks for Consideration When Establishing Buffer Pool Contributions	
	ersal Risks	
Regu	ılatory, Legal, and Compliance Risksect Implementation and Verification Risks	35

1. Introduction

This Methodology has been developed for use in connection with the Global Heat Reduction (GHR) Registry (the "Registry), consistent with the requirements of the GHR Registry Standard. It is intended for use in evaluating Projects under selected project types and within geographic regions identified herein.

The Methodology uses the standard nomenclature of "shall" or "must" for required clauses and "should" or "may" for suggested clauses. All documentation and reporting under this methodology must be conducted in English, with translations provided where necessary to accommodate local stakeholders.

2. Methodology Overview

2.1 Methodology Description

This methodology describes the requirements and standards for the installation, replacement, or modification of manure management systems in livestock farms to qualify for verified credits from the Global Heat Reduction (GHR) Registry. The primary goal is to achieve methane emission reductions through the anaerobic digestion of manure, producing biogas, which can be utilized, sold, or flared¹. The methodology also includes the collection of manure from multiple farms for centralized digestion systems.

The methodology is consistent with the methane recovery procedures of the Clean Development Mechanism (CDM) under the United Nations Framework Convention on Climate Change (UNFCCC). Specifically, it draws upon the CDM methane recovery methodologies AMS-III.D Methane recovery in animal manure management systems² and AMS-III.AO Methane recovery through controlled anaerobic digestion³.

This methodology is designed to ensure that credits issued represent additional, permanent, independently-verified, and rigorously-quantified reductions in methane emissions. Final approval of a project under this methodology is granted exclusively by the GHR Registry.

2.2 Project Activities Covered by the Methodology

Projects under this methodology capture and manage biogas produced from anaerobic digestion of manure. This process involves the collection of methane-rich biogas from digestion systems, which can then be used as a renewable energy source, sold as a commodity, or flared to prevent methane emissions. Projects will either install new or improve the efficiency of existing anaerobic digesters, biogas collection systems, flaring systems, or utilization equipment.

2.3 Eligibility Requirements for Projects under the Methodology

Individual projects are considered eligible to earn credits if they meet all eligibility requirements of the GHR Registry Standard and all the following conditions are met:

- The livestock population in the farm is managed under confined conditions;
- Manure or the streams obtained after its treatment in digesters are not discharged into natural water resources (e.g., river or estuaries);
- The annual average temperature of baseline site where anaerobic manure treatment facility is located is higher than 5 °C;

- In the baseline scenario, the retention time of manure waste in the anaerobic treatment systems (e.g., lagoons or deep pits) is greater than one month, and if anaerobic lagoons are used in the baseline, their depths are at least 1 meter;
- The amount of methane recovered is increased as a result of the project activities, as described in Section 2.2;
- The residual waste from the animal manure digestion systems (i.e., digestate) is handled aerobically, otherwise the related emissions shall be taken into account as per relevant procedures of AMS-III.AO Methane recovery through controlled anaerobic digestion. Proper conditions and procedures (not resulting in methane emissions, e.g., subsurface injection) must be ensured when applying digestate to soils;
- Technical measures and equipment are used (including a flare for exigencies) to ensure that all biogas produced by the digester is used or flared;
- The storage time of the manure after removal from the animal barns, including transportation, does not exceed 45 days before being fed into the anaerobic digester. However, during warmer conditions (e.g., when average daily temperatures exceed 15°C), the storage period shall be reduced to a maximum of 10 days to prevent significant methane emissions during storage. If the project proponent can demonstrate that the dry matter content of the manure when removed from the animal barns is larger than 20%, this time constraint will not apply.
 - For manure removed from compost bedded pack barns, where partial aerobic degradation occurs, the project proponent must demonstrate that conditions in the bedding pack prevent significant methane generation (e.g., regular aeration or sufficient dry matter content). If these conditions are met and methane emissions are controlled, the 45-day limit may remain in place.

2.4 Geographic Scope

Global

3. Materiality, Additionality, Permanence and Secondary Effects

3.1 Materiality

Materiality refers to information that, if omitted, erroneous or misstated, would lead to misrepresentation of radiative forcing (RF) reduction of a project. A materiality assessment is required for projects, with a materiality threshold of +/-5% of RF reductions in a given monitoring period. Materiality will be assessed by the validation and verification body (VVB) as part of validation and verification (see Section 7.5). See further discussion in the GHR Registry Standard.

In this category, errors, omissions, and misrepresentations that could significantly affect the estimation of the RF reduction potential associated with a project include, for example:

- Significant under-estimate or over-estimate of the methane emissions reduced by the project
- Misrepresentation of the project in terms of any eligibility or additionality requirements

3.2 Additionality Considerations

The project proponent must demonstrate additionality for projects that capture and destroy or use biogas, consistent with the Registry Standard. In addition, the following conditions apply:

• The quantity of biogas to be captured and destroyed exceeds any amount of recovery which is required under national or local regulations; and

- Sales of generated biogas are insufficient to financially support the project development and activities.
- If co-digestion of other organic waste (e.g., food waste, agricultural residues) is used, the project proponent must demonstrate that the co-digestion does not detract from the additionality of the project. Specifically, any biogas captured from these additional feedstocks must not already be required by existing regulations or financially viable without carbon credits.

The Project Proponent shall provide clear evidence for additionality in the Project Design Document (see Section 7.1).

3.3 Permanence

The annual methane emissions that would otherwise have been generated by an anaerobic digester system will be permanently reduced by projects under this Methodology. Therefore, there is no risk of non-permanence of RF reductions achieved based on the emissions reductions achieved through this process.

The Project Proponent shall evaluate and report the risk of non-permanence at each monitoring period (see Section 7).

3.4 Risk of Secondary Effects

Secondary effects have the potential to increase greenhouse gas emissions or other contributors to positive RF associated with a project due to material substitutions or changes in activities or operations outside the project boundary.

Secondary effects shall be determined using the latest version of the CDM tool "Project and leakage emissions from anaerobic digesters." 1

¹ Available at https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-14-v2.pdf

4. Baseline and Project Scenario Descriptions

4.1 Baseline Scenario

The baseline scenario represents a business-as-usual situation, representing what would have occurred in the absence of the project activities (described in Section 4.2). In the baseline scenario, the degradable organic matter in the manure decays during handling and storage within the project boundary and methane and other greenhouse gases (GHGs) are emitted to the atmosphere. Manure or wastewater may be treated anaerobically in common systems such as uncovered lagoons, deep pits, or other anaerobic storage facilities where oxygen is limited, resulting in methane emissions. Baseline emissions shall exclude emissions of methane that would have to be captured, flared, used as fuel, or otherwise gainfully used to comply with national or local safety requirements or legal regulations.

4.2 Project Scenario

The project scenario is a livestock operation in which an anaerobic digester is installed, replaced, or modified for digestion of manure and biogas is generated, captured, and managed on-site.

4.3 Group Project Scenario

It is possible that multiple livestock operations under one management and ownership system may apply for assessment, validation, verification, and credit issuance in an aggregated group. All such operations within the group would be required to individually meet the requirements of the GHR Registry Standard and this methodology.

5. Project Boundaries

5.1 Boundaries for Assessing Radiative Forcing, Radiative Forcing Reduction, Co-benefits, and Trade-offs

The project boundary is the physical, geographical site:

- a) Where the manure would have been disposed of and the methane emission occurs in absence of the proposed project activity;
- b) In the case of projects co-digesting wastewater, wastewater refers to organic-rich wastewater from agricultural, food processing, or livestock operations, where the wastewater would have been treated anaerobically in the absence of the project activity;
- c) Co-digestion of other organic materials, such as food waste or agricultural residues, may be included if these materials contribute to methane recovery. However, the project proponent must ensure that the co-digestion aligns with the additionality requirements outlined in Section 3.2 and that all sources of wastewater or co-digested materials are within the project boundary. For projects including co-digestion, projects must submit calculations of baseline and project emissions that account for the co-digestion to the GHR Registry for approval;
- d) Where the treatment of manure through anaerobic digestion takes place;
- e) Where the residual waste from biological treatment or products from those treatments, like slurry, are handled, disposed, applied to soil, or treated thermally/mechanically;
- f) Where biogas is burned/flared or gainfully used, including biogas sale points, if applicable; and
- g) The transportation routes between the above listed cases (a, b, c, d and e), where the transportation of manure, wastewater (where applicable), residual waste after digestion, or biogas occurs.

5.2 Sources, Sinks, and Reservoirs of Radiative Forcing

* NOTE: Delineate sources, sinks, and reservoirs to be analyzed for credits, as described in the **GHR Registry Standard.**

Project proponents shall account for all significant sources of climate forcer emissions and removals, within the project boundary (as described in Section 5.1), to provide an accurate estimation of the project's net impact on climate forcing. The exclusion of emission sources is permissible, provided the exclusions result in conservatively low crediting² and have been tested for their significance to total credit amounts. Sources (Table 1) that are considered significant and/or selected for accounting in the baseline scenario shall also be included in the project scenario.

Table 1. Climate forcer emission sources relevant to methane recovery projects

Source	Climate Forcer	Included in Calculation	Justification/Explanation	
Uncontrolled		Required	Baseline methane emissions which are	
anaerobic decay CH ₄			avoided under the project scenario.	
of manure				
Operation of CO ₂ , CH ₄ , N ₂ O,		Required	Operating an anaerobic digester requires	
anaerobic NO _x , CO, Black powering pumps and other components		powering pumps and other components. The		
digester Carbon, Organic use of grid electricity or burning of fuels		use of grid electricity or burning of fuels		

² An exclusion is acceptable if it tends to underestimate net climate forcer emission reductions/removal enhancements.

	Carbon, Sulfate		(excluding biogas) to power these components
	aerosols		results in climate forcer emissions.
	aerosois	Doguirod	
		Required	Leaks may occur from anaerobic digester
			tanks or pipes. Regular testing for leaks shall
			be conducted at least quarterly, or more
			frequently if local regulations or project-
Equipment	CH ₄		specific conditions (e.g., high methane
Leaks	CI14		concentrations or prior leak incidents) warrant
			it. Leak detection methods may include
			infrared cameras, gas analyzers, or pressure
			decay tests. Leaks must be quantified and
			reported in the Project Monitoring Reports.
	CO ₂ , CH ₄ , N ₂ O,	Required	Combustion of biogas results primarily in CO ₂
	NO _x , CO, Black	·	but can also lead to the release of CH ₄ , NO _x ,
Biogas	Carbon, Organic		CO, and N ₂ O under suboptimal conditions.
combustion	Carbon, Sulfate		Incomplete combustion can emit black carbon
	aerosols		and organic carbon.
	CO ₂ , CH ₄ , N ₂ O,	Required	The efficiency of methane destruction via
	NO _x , CO, Black	Required	flaring is variable, therefore residual methane
Flare	Carbon, Organic		emissions are considered. Flaring has been
inefficiency	Carbon, Sulfate		shown to release other climate forcers which
	aerosols		must be considered.
	CO ₂ , CH ₄ , N ₂ O,	Optional	Emissions from powered equipment used to
Callaction and		Optional	· · ·
Collection and	NO _x , CO, Black		collect or transport manure.
transport of	Carbon, Organic	() ()	
manure	Carbon, Sulfate		
	aerosols		
Storage of	CH ₄	Optional	Methane is released from anaerobic manure
manure	0.14		storage.

6. Quantification

6.1 Types of Data Required, Accepted Data Sources, and Calculation Methods

Information about necessary data and parameters can be found in the calculations and descriptions in Sections 6.2 - 6.4, the tools utilized or mandated in this methodology, and in Section 7.2. A listing of the monitored data and parameters is available in Appendix A.

6.2 Baseline Scenario Climate Forcer Calculation Methods

The project proponent shall calculate the baseline scenario climate forcer emissions using one of the following:

a) Option A – Using the amount of the waste or raw material that would decay anaerobically in the absence of the project activity, with the most recent IPCC Tier 2 approach (please refer to the chapter 'Emissions from Livestock and Manure Management' under the volume 'Agriculture, Forestry and other Land use' of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories). For the purposes of this methodology, "waste or raw material" refers primarily to animal manure and other organic matter from livestock operations that would naturally undergo anaerobic decay, leading to methane emissions. This may also include other organic substrates

that are part of the manure management system, such as agricultural residues or organic-rich wastewater, provided they are included in the baseline scenario. The calculation requires information about the characteristics of the manure and its management systems in the baseline. Manure characteristics include the amount of volatile solids (VS) produced by the livestock and the maximum amount of methane that can be potentially produced from that manure (B_0).

b) Option B – Using the amount of manure that would decay anaerobically in the absence of the project activity based on direct measurement of the quantity of manure treated together with its specific volatile solids (SVS) content.

6.2.1 Option A

If Option A is chosen, baseline methane emissions are determined as follows:

$$BE_y = D_{CH4} \times UF_b \times \sum_{j,LT} (MCF_j \times B_{O,LT} \times N_{LT,y} \times VS_{LT,y} \times MSF_{Bl,j})$$
 Eq. 1

1/	1/	P	rρ	•
----	----	---	----	---

WITEIE.	
BE_y	Baseline emissions in year y (t CH ₄)
D_{CH4}	Density of methane (0.00067 t/m³ at room temperature (20 °C) and 1 atm)
UF_b	Model correction factor to account for model uncertainties ³ (unitless)
j	Index for animal manure management system
LT	Index for all types of livestock
MCF_{j}	Annual methane conversion factor for the baseline animal manure
	management system j (unitless)
$B_{O,LT}$	Maximum methane production potential of the volatile solid generated from
	animal type <i>LT</i> (m³ CH₄/kg-dm)
$N_{LT,y}$	Annual average number of animals of type LT in year y (numbers)
$VS_{LT,y}$	Volatile solids production/excretion per animal of livestock LT in year y (on a dry
	matter weight basis, kg-dm/animal/year)
$MSF_{Bl,j}$	Fraction of manure collected in baseline animal manure management system j
	(unitless: 0-1)

- The maximum methane-production capacity of the manure (B_o) varies by species and diet. The preferred method to obtain B_o measurement values is to use data from country-specific published sources, measured with a standardized method (B_o shall be based on total as-excreted VS). These values shall be compared to the most recent default values of the IPCC and any significant differences shall be explained. If country specific B_o values are not available, default values from tables 10 A-4 to 10 A-9 of 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4, Chapter 10 can be used, provided that the project participants assess the suitability of those data to the specific situation of the treatment site.
- Volatile solids are the organic material in livestock manure and consist of both biodegradable and non-biodegradable components. For the calculations the total VS excreted by each animal species is required.

-

³ See FCCC/SBSTA/2003/10/Add.2, page 25.

- The preferred method to obtain VS is to use data from nationally published sources. These
 values shall be compared with IPCC default values and any significant differences shall be
 explained.
- If data from nationally published sources are not available, country-specific VS excretion rates can be estimated from feed intake levels, via the enhanced characterization method (tier 2) described in section 10.2 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4, Chapter 10, using Equation 2 below.

$$VS_{LT,y} = \left[GE_{LT} imes \left(1 - rac{DE_{LT}}{100}\right) + \left(UE imes GE_{LT}
ight)
ight] imes \left[\left(rac{1 - ASH}{ED_{LT}}
ight)
ight] imes nd_y$$
 Eq. 2

Where:

$VS_{LT,y}$	Annual volatile solid excretions for livestock LT entering all animal waste		
	management systems on a dry matter weight basis (kg-dm/animal/yr)		
GE_{LT}	Daily average gross energy intake (MJ/animal/day)		
DE_{LT}	Digestible energy of the feed (percent)		
UE	Urinary energy (fraction of GE _{LT})		
ASH	Ash content of manure (fraction of the dry matter feed intake)		
ED_{LT}	Energy density of the feed fed to livestock type LT (MJ/kg-dm)		
nd_y	Number of days treatment plant was operational in year y		

If country specific VS values are not available, IPCC default values from 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4, Chapter 10 table 10 A-4 to 10 A-9 can be used provided that the project proponent and VVB assess the suitability of those data to the specific situation of the treatment site particularly with reference to feed intake levels.

Project proponents may adjust default IPCC values for VS for a site-specific average animal weight. If so, it shall be well explained and documented. The following equation shall be used:

$$VS_{LT,y} = \left(rac{W_{site}}{W_{default}}
ight) imes VS_{default} imes nd_y$$
 Eq. 3

Where:

$VS_{LT,y}$	Annual volatile solid excretions for livestock LT entering all animal waste			
	management systems on a dry matter weight basis (kg-dm/animal/yr)			
W _{site}	Average animal weight of a defined livestock population at the project site (kg)			
W _{default}	Default average animal weight of a defined population, this data is sourced from			
	IPCC 2006 (kg)			
VS _{default} Default value for the volatile solid excretion rate per day on a dry-matte				
	for a defined livestock population (kg-dm/animal/day)			
nd_y	Number of days treatment plant was operational in year y			

B₀ or VS values applicable to developed countries can be used provided the following four conditions are satisfied:

- i. The genetic source of the livestock originates from an Annex I Party⁴;
- ii. The farm uses formulated feed rations (FFR) which are optimized for the various animal(s), stage of growth, category, weight gain/productivity and/or genetics;
- iii. The use of FFR can be validated (through on-farm record keeping, feed supplier, etc.); and
- iv. The project specific animal weights are within 10% of developed country IPCC default values. If the adjusted VS values deviate by more than 10% from the default developed country IPCC values, the project proponent must provide a detailed justification, including data sources and assumptions used for the adjustments. Any significant deviations should be based on robust, locally relevant data, such as feed composition or animal growth rates, and validated by independent sources.

In the case of sequential treatment stages, the reduction of the volatile solids during a treatment stage is estimated based on referenced data for different treatment types, as described in Equation 4. Emissions from the next treatment stage are then calculated following the approach outlined above, but with volatile solids adjusted for the reduction from the previous treatment stages by multiplying by (1 - RVS), where RVS is the relative reduction of volatile solids from the previous stage. The relative reduction of volatile solids (RVS) depends on the treatment technology and should be estimated in a conservative manner. Default values for different treatment technologies can be found in the table in the Appendix of CDM methodology AMS-III.D⁵.

$$BE_{y} = D_{CH4} \times UF_{b} \times \sum_{j,LT,ts} (MCF_{j} \times B_{O,LT} \times N_{LT,y} \times VS_{LT,y,ts} \times (1 - RVS_{ts}) \times MSF_{Bl,j}) \quad \text{Eq. 4}$$

W	'he	re:
---	-----	-----

BE_y	Baseline emissions in year y (t CH ₄)
D_{CH4}	Density of methane (0.00067 t/m³ at room temperature (20 °C) and 1 atm)
UF_b	Model correction factor to account for model uncertainties ⁶ (unitless)
j	Index for animal manure management system
LT	Index for all types of livestock
ts	Index for treatment stage
MCF_j	Annual methane conversion factor for the baseline animal manure
	management system j (unitless)
$B_{O,LT}$	Maximum methane production potential of the volatile solid generated from
	animal type <i>LT</i> (m³ CH₄/kg-dm)
$N_{LT,y}$	Annual average number of animals of type LT in year y (numbers)
$VS_{LT,y}$	Volatile solids production/excretion per animal of livestock <i>LT</i> in year <i>y</i> (on a dry
	matter weight basis, kg-dm/animal/year)
$RVS_{\mathit{LT},\mathit{y}}$	Relative reduction of volatile solids from the previous stage (fraction 0-1)
$MSF_{Bl,j}$	Fraction of manure collected in baseline animal manure management system j
	(unitless: 0-1)

⁴Annex I Parties include the industrialized countries that were members of the OECD (Organisation for Economic Co-operation and Development) in 1992, plus countries with economies in transition (the EIT Parties), including the Russian Federation, the Baltic States, and several Central and Eastern European States. Retrieved from https://unfccc.int/parties-observers.

9

 $^{^{5}\} https://cdm.unfccc.int/methodologies/DB/H9DVSB24O7GEZQYLYNWUX23YS6G4RC$

⁶ See FCCC/SBSTA/2003/10/Add.2, page 25.

Methane Conversion Factors (MCF) values are determined for a specific manure management system and represent the degree to which B_0 is achieved. Where available country-specific MCF values that reflect the specific management systems used in particular countries or regions shall be used. Alternatively, the IPCC default values provided in table 10.17 of 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4, Chapter 10 can be used. The site annual average temperature is taken from official data at the nearest meteorological station, or from data available from historical on-site observations.

The annual average number of animals (N_t) is determined as follows:

$$N_{LT,y} = N_{DA,y} \left(\frac{N_{P,y}}{365}\right)$$
 Eq. 5

$$\frac{N_{LT,y}}{N_{DA,y}}$$
 Annual average number of animals of type LT in year y

$$\frac{N_{DA,y}}{N_{P,y}}$$
 Number of days animal is alive in the farm in year y

$$\frac{N_{DA,y}}{N_{P,y}}$$
 Number of animals produced annually of type LT for the year y

6.2.2 Option B

If Option B is chosen, baseline methane emissions are determined based on directly measured quantity of manure and its specific volatile solids content, as follows:

$BE_{y} = D_{CH4} \times UF_{b} \times \sum_{j,LT} (MCF_{j} \times B_{O,LT} \times Q_{manure,j,LT,y} \times SVS_{j,LT,y})$ Eq. 6				
Where:				
BE_y	Baseline emissions in year y (t CH ₄)			
D _{CH4}	Density of methane (0.00067 t/m³ at room temperature (20 °C) and 1 atm)			
Model correction factor to account for model uncertainties ⁷ (unitless)				
MCF _j Annual methane conversion factor for the baseline animal manure m system j (unitless)				
$B_{O,LT}$	Maximum methane production potential of the volatile solid generated for animal type <i>LT</i> (m ³ CH ₄ /kg-dm)			
$Q_{manure,j,LT,y}$	Quantity of manure from livestock type <i>LT</i> that is treated in animal manure management system <i>j</i> (tonnes/year, dry basis)			
Sys _{j,LT,y} Specific volatile solids content of animal manure from livestock type LT ar manure management system j in year y (tonnes/tonnes, dry basis)				

⁷ See FCCC/SBSTA/2003/10/Add.2, page 25.

6.3 Project Scenario Climate Forcer Calculation Methods

The project scenario climate forcer emissions shall be calculated as follows:

$PE_{y,f} = PE_{PL,y,j}$	$E_{f} + PE_{flare,y,f} + PE_{power,y,f} + PE_{transp,y,f} + PE_{storage,y}$	Eq. 7
Where:		
DE	Drainet amissions in year y for climate forcer f (tannes)	

$PE_{y,f}$	Project emissions in year y, for climate forcer f (tonnes)
$PE_{PL,y,f}$	Emissions due to physical escape of biogas in year y, for climate forcer f
	(tonnes). Note, this factor is only required for methane emission calculations.
$PE_{flare,y,f}$	Emissions from flaring or combustion of the biogas stream in year y , for climate forcer f (tonnes)
PE _{power,y,f}	Emissions from the use of fossil fuel or electricity for the operation of the installed facilities in the year y , for climate forcer f (tonnes)
$PE_{transp,y,f}$	Emissions from incremental transportation in year y , for climate forcer f (tonnes)
$PE_{storage,y,f}$	Emissions from the storage of manure in year y , for climate forcer f (tonnes). Note, this factor is only required for methane emission calculations.

- Project emissions due to physical escape of biogas from the animal manure management systems used to produce, collect and transport the biogas to the point of flaring or gainful use are estimated as:
 - a) 10% of the maximum methane production potential of the manure fed into the management systems implemented by the project activity:⁸
 - i. If Option A is chosen, it is determined as:

$$PE_{PL,y,f} = 0.10 \times D_{CH4} \times \sum_{i} (B_{O,LT} \times N_{LT,y} \times VS_{LT,y} \times MSF_{i,y})$$
 Eq. 8

Where:

$PE_{PL,y,f}$	Emissions due to physical escape of biogas in year y, for climate forcer f (tonnes)
D_{CH4}	Density of methane (0.00067 t/m³ at room temperature (20 °C) and 1 atm)
$B_{O,LT}$	Maximum methane production potential of the volatile solid generated for animal type LT (m ³ CH ₄ /kg-dm)
$N_{LT,y}$	Annual average number of animals of type LT in year y
$VS_{LT,y}$	Volatile solids production/excretion per animal of livestock <i>LT</i> in year <i>y</i> (on a dry matter weight basis, kg-dm/animal/year)

⁸ 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4 Chapter 10 guidelines specify a default value of 10% of the maximum methane production potential (Bo) for the physical escape from anaerobic digesters.

$MSF_{i,y}$	Fraction of manure treated in system <i>i</i> in year <i>y</i> (unitless: 0-1) If the project activity involves sequential manure management systems, the procedure specified in Equation 4 in Section 6.2.1 shall be used to estimate the project emissions due to physical escape of biogas from each stage
	procedure specified in Equation 4 in Section 6.2.1 shall be used to estimate the

ii. If Option B is chosen, it is determined as:

$PE_{PL,y,f} = 0.10 \times D_{CH4} \times \sum_{i} (B_{O,LT} \times Q_{manure,LT,y} \times SVS_{LT,y} \times MSF_{i,y})$	Eq. 9

Where:

$PE_{PL,y,f}$	Emissions due to physical escape of biogas in year y , for climate forcer f (tonnes)
D_{CH4}	Density of methane (0.00067 t/m³ at room temperature (20 °C) and 1 atm)
$B_{O,LT}$	Maximum methane production potential of the volatile solid generated for animal type LT (m ³ CH ₄ /kg-dm)
$Q_{manure,LT,y}$	Quantity of manure treated from livestock type LT (tonnes/year, dry basis)
$SVS_{LT,y}$	Specific volatile solids content of animal manure from livestock type <i>LT</i> in year <i>y</i>
	(tonnes/tonnes, dry basis)
$MSF_{i,y}$	Fraction of manure handled in system <i>i</i> in year <i>y</i> (unitless: 0-1)
· ·	If the project activity involves sequential manure management systems, the
	procedure specified in Equation 4 in Section 6.2.1 shall be used to estimate the
	project emissions due to physical escape of biogas in each stage

- b) Optionally, the relevant procedure in the methodological tool "Project and leakage emissions from anaerobic digesters" may be followed. In such a case, PE_{PL,y,CH4} for methane is equivalent to PE_{CH4,y} in the tool, excluding conversion to CO₂e.
- The project proponent shall estimate project CO₂ emissions due to leaks from the equipment used to produce, collect, and transport the biogas to the point of use, sale, or flaring using the volume fraction of CO₂ in the biogas and the same default leak factor (10%) as methane, unless a lower value can be justified based on project measurements.
- In the case of flaring of the recovered biogas, the project emissions shall be estimated using the CDM methodological tool "Project emissions from flaring," 9 with the following modifications:
 - a) All CH₄ which is not combusted shall be kept as a quantity of CH₄ and not converted to CO₂e; and
 - b) All CH₄ which is combusted shall be considered to be 100% converted to CO₂, and therefore included in the project CO₂ emissions inventory.
 - i. If the recovered biogas is combusted for electrical/thermal energy production or for other gainful use, the methane destruction efficiency can be considered as 100%. However, this use of the recovered biogas shall be included in the project boundary and its output shall be monitored in order to ensure that the recovered

⁹ Available at https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-06-v4.0.pdf

biogas is actually destroyed. The CO_2 emissions shall be included in the calculation of the project CO_2 emissions inventory.

- c) Project emissions from the remaining climate forcers shall be calculated in a similar manner, using the project electricity and fuel use with the appropriate emission factor for each respective climate forcer.
- Project CO₂ emissions from electricity and fossil fuel consumption are determined by following the methodological tool "Project and leakage emissions from anaerobic digesters", ¹⁰ where PE_{power,y,CO2} is the sum of PE_{EC,y} and PE_{FC,y} in the tool. Project emissions from the remaining climate forcers shall be calculated in a similar manner, using the project electricity and fuel use with the appropriate emission factor for each respective climate forcer.
- Project emissions due to manure collection and transport (PE_{transp,y,f}) are calculated based on the incremental distances between:
 - a) The collection points of manure and the digestion site as compared to the baseline solid waste disposal site or manure treatment site; and
 - b) When applicable, the collection points of wastewater and treatment site as compared to baseline wastewater treatment site.

Project climate forcer emissions from manure collection and transport are calculated using Equation 10:

- Emissions from transportation-related fuel use include those generated from the use of trucks or other vehicles for transporting manure, wastewater, or residual waste.
- Residual waste refers to the by-products of anaerobic digestion, including digestate, which may be handled, transported, or applied to soil. If the digestate is treated on-site (e.g., for composting or producing other products such as biofertilizers), emissions from transportation of these products must be accounted for in the project scenario as well.

$$PE_{transp,y,f} = \frac{Q_y}{CT_y} \times DAF_w \times EF_{transport,f} + \frac{Q_{resWaste,y}}{CT_{resWaste,y}} \times DAF_{resWaste} \times EF_{transport,f}$$
Eq. 10

Where:

$PE_{transp,y,f}$	Emissions from incremental transportation in year y , for climate forcer f (tonnes)
Q_y	Quantity of manure treated and/or wastewater co-digested in year y (tonnes)
CT_y	Average truck capacity for transportation (tonnes/truck)
DAF_{w}	Average incremental distance for manure and/or wastewater transportation (km/truck)
EF _{transport,f}	Emission factor for climate forcer f , from transportation-related fuel use (kg/km, IPCC default values ¹¹ or local values may be used)
$Q_{resWaste,y}$	Quantity of residual waste or other byproducts produced in year y (tonnes)
$CT_{resWaste,y}$	Average truck capacity for residual waste or other byproduct transportation (tonnes/truck)
DAF _{resWaste}	Average distance for residual waste transportation (km/truck)

¹⁰ Available at https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-14-v2.pdf

¹¹ IPCC Guidelines for National Greenhouse Gas Inventories, Volume 1, Chapter 2, and Volume 4, Chapter 10

- Project emissions on account of storage of manure before being fed into the anaerobic digester shall be accounted for if both condition (a) and condition (b) below are satisfied:
 - a) The storage time of the manure after removal from the animal barns, including transportation, exceeds 24 hours before being fed into the anaerobic digester;
 - b) The dry matter content of the manure when removed from the animal barns is less than 20%.

The following method shall be used to calculate project methane emissions from manure storage:

$PE_{storage} = D_{CH4} \times \sum_{i}$	$l[\frac{365}{AI_l} \times \sum_{d=1}^{AI} (N_{LT} \times VS_{LT,d} \times MSF_l \times (1 - e^{-k(AI_l - d)}) \times MCF_l \times B_{O,LT})] $ Eq. 11
Where:	
$PE_{storage}$	Project emissions on account of manure storage in year y (t CH ₄)
D_{CH4}	Density of methane (0.00067 t/m³ at room temperature (20 °C) and 1 atm)
AI_l	Annual average interval between manure collection and delivery for treatment
	at a given storage device l (days)
N_{LT}	Annual average number of animals of type LT (numbers)
$VS_{LT,d}$	Amount of volatile solid production by type of animal LT in a day (kg VS/head/d)
MSF_l	Fraction of volatile solids handled by storage system(s) <i>l</i> (unitless: 0-1)
k	Degradation rate constant (0.069)
d	Days for which cumulative methane emissions are calculated; d can vary from 1
	to 45 and to be run from 1 up to Al _l
MCF_l	Annual methane conversion factor for the project manure storage device $\it l$ from
	Table 10.17, Chapter 10, Volume 4, 2006 IPCC Guidelines for National
	Greenhouse Gas Inventories (fraction 0-1)
$B_{O,LT}$	Maximum methane production potential of the volatile solid generated for
	animal type <i>LT</i> (m³ CH ₄ /kg-dm)

6.4 Determination of the Project's Climate Impact

The emission reductions achieved by the project activity are calculated as the baseline emissions minus the project emissions using the actual monitored data for the project activity (i.e. $N_{LT,y}$, $MSF_{I,y}$, $MSF_{I,y}$, $MSF_{I,y}$, as well as $VS_{LT,y}$ in cases where adjusted values for animal weight are used). The emission reductions achieved in any year are:

$ER_{y,f} = BE_y - PE_{y,f}$ Where:	f Eq. 12
$ER_{y,f}$	Emission reductions achieved by the project activity based on monitored values for year y, for climate forcer f (tonnes of climate forcer f)
BE_y	Baseline emissions calculated using Equation 1 (for projects using baseline Option A) using ex post monitored values of $N_{LT,y}$ and, if applicable, $VS_{LT,y}$. For projects using baseline Option B, Equation 6 is used with the ex post monitored values for $Q_{manure,j,LT,y}$ and $SVS_{j,LT,y}$. Methane only unless otherwise noted. (tonnes)

$PE_{y,f}$	Project emissions calculated using Equation 7 using ex post monitored values for year y of $N_{LT,y}$, MSF _{i,y} , MSF _i , AI _i , and, if applicable, VS _{LT,y} (tonnes of climate
	forcer f)

Biogas flared or combusted (MD_y) shall be determined using the flare efficiency and methane content of biogas.

Where:	$MD_y = BG_{burnt,y} imes w_{CH4,y} imes D_{CH4} imes FE$ Eq. 13
MD_y	Amount of methane captured and destroyed or used gainfully by the project activity in year <i>y</i> (tonnes)
$BG_{burnt,y}$	Amount of biogas flared or combusted in year y (m³)
W _{CH4,y}	Methane content in the biogas in year y (volume fraction)
D _{CH4}	Density of methane (0.00067 t/m³ at room temperature (20 °C) and 1 atm)
FE	Flare efficiency in the year y (fraction)

The method for integration of the terms in Equation 13 to obtain the results for one year of measurements, the confidence levels of those values, as well as the methods and instruments used for metering, recording and processing the data obtained, shall be described in the PDD and monitored during the crediting period.

Alternatively, if project activities utilize the recovered methane for power generation, MD_{γ} may be calculated as follows, based on the amount of monitored electricity generation, without monitoring methane flow and concentration:

	$MD_y = \frac{EG_y \times 3600}{NCV_{CH4} \times EE_y} \times D_{CH4}$ Eq. 14
Where:	
MD_y	Methane captured and destroyed or used gainfully by the project activity in year y
EG_y	Total electricity generated from the recovered biogas in year y (MWh)
NCV _{CH4}	NCV of methane (MJ/Nm³) (use default value: 35.9 MJ/Nm³)
EE_y	Energy conversion efficiency of the project equipment (manufacturer specification or default value of 40%)
D_{CH4}	Density of methane (0.00067 t/m³ at room temperature (20 °C) and 1 atm)

The potential credit amount in carbon dioxide equivalents (CO₂e) is calculated as shown in Equation 15:

	$R_{CO_2e,y} = ER_{y,CO_2} + \sum_{y,f} ER_{y,f} \times GWP_f$ Eq. 15
Where:	
$R_{CO_2e,t}$	Reduction in CO₂e due to project activities in year y (t CO e)
ER_{y,CO_2}	Net CO ₂ emissions in year y (t CO ₂ e)
$ER_{y,f}$	Net emissions in year y for climate forcer f (tonnes)
GWP_f	Global warming potential over 100 years (GWP 100) for climate forcer f (use latest IPCC values) ¹²

The RF reduction (CO_2 fe or W/ m^2) in a given year is calculated as follows:

	$R_{CO_2fe,y} = \sum RF(ER_{y,f})$ Eq. 16
Where:	
$R_{CO_2fe,y}$	Climate forcer reduction due to project activities in year y (t CO₂fe)
$ER_{y,f}$	Net emissions in year y for climate forcer f (tonnes)
$RF(ER_{y,f})$	RF of net climate forcer emissions in year y. The function calculating RF for a given climate forcer (in CO_2 fe, W/m^2 , or derivative unit) is described in Appendix A of the Registry Standard.

Additional details for calculating radiative forcing can be found in Appendix A of the Registry Standard. Radiative forcing shall also be calculated in W/m^2 , or derivative unit (e.g., nanowatts per square meter, or nW/m^2) as described in the GHR Registry Standard. Accumulated RF reductions shall be calculated annually using the first year of the project as t_0 .

6.5 Conservative Assumptions and Estimates

For manure management systems using sequential treatment stages, an estimation of the VS during a treatment stage is made based on referenced data for different treatment types. The approach from Equation 3 is used to calculate emissions from subsequent treatment stages, with the VS term adjusted down to account for the reduction in volatile solids in the previous treatment stage(s), using a conservative estimate for the relative VS reduction based on the treatment technology. The Appendix of CDM methodology AMS-III.D contains default values for different treatment technologies.

Project activities where a portion of the biogas is destroyed through flaring and the other portion is used for energy must apply the flare efficiency to the portion of the biogas used for energy, if separate measurements of the respective flows are not performed. When the amount of methane that is combusted for energy and that is flared is separately monitored, or when only the biogas flow to the flare is monitored and the biogas used for energy is calculated based on electricity generation, a destruction efficiency of 100% can be used for the amount that is combusted for energy.

¹² See IPCC AR6 Table 7.SM.7 | Greenhouse gas lifetimes, radiative efficiencies, global warming potentials (GWPs), global temperature potentials (GTPs) and cumulative global temperature potentials (CGTPs). Available at https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf.

Emissions of methane and CO_2 from project equipment leaks are estimated to be 10% of the maximum potential methane production and 10% of the total CO_2 production (based on mole fraction in the biogas), respectively, unless a lower value can be justified based on project measurements.

In addition, as noted above, a factor (UF_b) of 0.94 is used in the Equation for Baseline Option A to account for model uncertainties.

6.6 Methods of Determining Uncertainty

Uncertainties may originate from estimated values and limitations in the accuracy of the systems used to measure the methane recovery and management processes. These uncertainties affect the baseline scenario, the measurement of methane recovery, the factors considered in the whole project emissions calculations, and the methane utilization or destruction processes. Each parameter used in the quantification (Sections 6.2- 6.4) must have its uncertainty calculated from calibration checks, determined from relevant peer-reviewed scientific literature, or conservatively estimated with clear documentation, as applicable.

The degradation rate of methane in the atmosphere is well established in the literature and will be used for calculation purposes. Conservative assumptions listed in Section 6.5 may be used without uncertainty estimation requirements. Credit issuance will be discounted on a conservative basis reflecting on the variability in these parameters, as described in Section 8.

6.7 Potential co-benefits, trade-offs, and Sustainable Development Goals (SDGs)

The project proponent shall, at minimum, make a qualitative assessment of co-benefits and trade-offs associated with the project activities. The Project Proponent may self-report applicable SDGs using the GHR SDG Contributions Reporting Tool. Self-reported SDGs must include justifications for each and will be made publicly available in the GHR Registry.

Alternatively, for verified claims, the latest Methodology Standard for Stressor-Effects Life Cycle Assessment (SCS-002) standard¹³ may be used to make a quantitative assessment of any co-benefits and trade-offs. Verified claims related to co-benefits, trade-offs, and SDGs are only permissible when the project has undergone a quantitative assessment for the relevant impact category.

Table 2 shows a list of potential co-benefits and trade-offs relevant to this methodology. In the table, a "Yes" indicates that a co-benefit or trade-off may be applicable to the project, while a "No" indicates a lack of applicability.

Table 2. List of Impact Categories for determining Potential Co-benefits and Trade-offs

Impact Group	Impact Category	Potential Co- benefits relevant to Project Scenario	Potential Trade- off relevant to Project Scenario
Resource Depletion	Non-Renewable Energy Resource	Yes	No
Group	Depletion	103	140
	Net Freshwater Consumption No		No
	Biotic Resource Depletion	No	No

¹³ Methodology Standard for Stressor-Effects Life Cycle Assessment Version 2.0.

17

Ocean Ecosystem	Ocean Acidification	No	No
Impacts Group	Marine Biome Disturbance	No	No
	Marine Eutrophication	No	No
	Key Species Loss	No	No
	Persistent Eco Toxic Chemical Loading	No	No
	Marine Plastic Loading	No	No
Terrestrial Ecosystem	Regional Acidification	No	No
Impacts Group	Stratospheric Ozone Depletion	No	No
(impacts from	Freshwater Ecotoxic Exposure Risks	No	No
Emissions)	Freshwater Eutrophication	No	No
	Terrestrial Eutrophication	No	No
Terrestrial Ecosystem	Terrestrial Disturbance	Yes No	
Impacts Group	Freshwater Disturbance	Yes	No
(impacts from Land		/ X / (
Use and Land	Threatened Species Impacts	No	No
Conversion)			
Human Health	Ground Level Ozone Exposure	Project Dependent	
Impacts (from Chronic	Impacts		
Exposures to	PM2.5 Exposure Impacts	Project Dependent	
Hazardous Substances)	Hazardous Ambient Air Contaminant Exposure Impacts	Yes	No
	Hazardous Indoor Air Contaminant Exposure Impacts	No	No
	Hazardous Food or Water Contaminant Exposure Impacts	No	No
	Hazardous Dermal Contaminant Impacts	No	No
Risks from Hazardous	Risks from Radioactive Wastes	No	No
Wastes	Risks from Untreated Hazardous Wastes	No	No

Projects which undergo a quantitative co-benefit and trade-off assessment may be eligible to make verified claims about the following SDGs and targets (determined using the GHR SDG Contributions Reporting Tool, pending assessment results:

Table 3. Potentially Verifiable SDGs and Targets

Sustainable Development Goal	Target Number	Target
3. Ensure healthy lives and		By 2030, substantially reduce the number of deaths and
promote well-being for all at all	3.9	illnesses from hazardous chemicals and air, water and
ages		soil pollution and contamination
6. Ensure availability and		By 2020, protect and restore water-related ecosystems,
sustainable management of	6.6	including mountains, forests, wetlands, rivers, aquifers
water and sanitation for all		and lakes
	7.2	By 2030, increase substantially the share of renewable
	1.2	energy in the global energy mix

7. Ensure access to affordable,		By 2030, expand infrastructure and upgrade technology
reliable, sustainable and		for supplying modern and sustainable energy services
modern energy for all	_	for all in developing countries, in particular least
,	7.b	developed countries, small island developing States, and
		land-locked developing countries, in accordance with
		their respective programs of support
11. Make cities and human		By 2030, enhance inclusive and sustainable urbanization
settlements inclusive, safe,		and capacity for participatory, integrated and
resilient and sustainable	11.3	sustainable human settlement planning and
		management in all countries
		Strengthen efforts to protect and safeguard the world's
	11.4	cultural and natural heritage
		By 2030, reduce the adverse per capita environmental
	11.6	impact of cities, including by paying special attention to
		air quality and municipal and other waste management
12. Ensure sustainable		Support developing countries to strengthen their
consumption and production		scientific and technological capacity to move towards
patterns	12.a	more sustainable patterns of consumption and
		production
13. Take urgent action to		Integrate elimate change measures into national
combat climate change and its	13.2	Integrate climate change measures into national
impacts		policies, strategies and planning
15. Protect, restore and		By 2020, ensure the conservation, restoration and
promote sustainable use of		sustainable use of terrestrial and inland freshwater
terrestrial ecosystems,	15.1	ecosystems and their services, in particular forests,
sustainably manage forests,		wetlands, mountains and drylands, in line with
combat desertification, and	10	obligations under international agreements
halt and reverse land		By 2020, promote the implementation of sustainable
degradation and halt	15.2	management of all types of forests, halt deforestation,
biodiversity loss	13.2	restore degraded forests and substantially increase
		afforestation and reforestation globally
	→	By 2030, combat desertification, restore degraded land
C.X	15.3	and soil, including land affected by desertification,
	13.3	drought and floods, and strive to achieve a land
		degradation-neutral world

7. Reporting Requirements

7.1 Project Design Document (PDD)

A Project Design Document (PDD) is required to be developed by the Project Proponent under the Registry Standard at the outset of the project prior to validation and verification. It is subject to approval by GHR prior to registration in the GHR Registry.

The PDD will be published and publicly available in the GHR Registry. A Project Proponent may request redactions to some information in the PDD to protect intellectual property and other business confidential

information (e.g., proof of eligibility information, the specific terms of legal agreements, and intellectual property detailed in life cycle assessments). Redaction will be at the sole choice of GHR but such permission will not be unreasonably withheld. However, all information will be subject to validation and verification requirements.

Specifications for the content of the Project Design Document can be found in the GHR Project Design Document Template.

7.2 Documentation and Monitoring

The project proponent must submit a detailed project monitoring plan as part of the Project Design Document (PDD). The monitoring plan should facilitate the gathering of all pertinent data needed for:

- Confirming the fulfilment of the eligibility requirements
- Confirming the emissions associated with the project and any emissions from secondary effects

The data gathered shall be kept on record for a minimum of five years following the conclusion of the project activity's final crediting period.

Details shall be provided and documented in the project monitoring plan to confirm that best practices are being utilized, as specified in the GHR Project Design Document. In cases where such methods and procedures are not known or accessible, the project will establish, document, and apply standard operating procedures (SOPs) and quality control/quality assurance (QA/QC) processes for inventory tasks, including field data gathering and data management. It is advisable to use or modify SOPs obtained from published manuals.

Project proponents shall provide evidence to a validating VVB that only the biogas recovered through the project manure management system is used for power generation; no other gas or fuels except a start-up fuel representing no more than 1% of total fuel utilized on an energy basis are used.

The monitoring plan shall include on-site inspections for each individual farm included in the project boundary where the project activity is implemented for each verification period. Where applicable, proper soil application (not resulting in methane emissions) of the residual waste shall be monitored.

If Option A is chosen for baseline emission determination:

- The project monitoring plan shall describe the system used for monitoring the fraction of the manure handled in the animal manure management system (MSP_{i,t}), the average weight of the livestock (W_{site}) and the livestock population (N_t) taking into account the average number of days the animals are alive in the farm in a specific year. The consistency between these values and indirect information (records of sales, records of food purchases) shall be assessed by the VVB. Significant changes in livestock population and average weight shall be explained.
- If developed country VS values are being used the following shall be monitored:
 - Genetic source of the production operations livestock originates from an Annex I Party;
 - The formulated feed rations (FFR). If Equation 3 is used to estimate the value VS_{default} (kg-dm/animal/day), the default average animal weight of a defined population (kg) shall be recorded and archived.

Monitoring Reports for the project must be submitted as specified in Section 7.3, using the GHR Monitoring Report Template. Monitoring Reports must contain updated data, calculations, and attestations as specified in the project monitoring plan and the Monitoring Report Template. Any deviations from the project monitoring plan must be reported and justified within the Monitoring Reports.

7.3 Monitoring Report

The Project Proponent shall generate a Monitoring Report to describe ongoing project activities addressed in the monitoring plan. Each Monitoring Report must cover the period from the last report to present, and will be published and publicly available in the GHR Registry.

Project Proponents may request redactions to some information in updated Monitoring Reports to protect intellectual property (IP). Redaction will be at the sole discretion of the GHR Registry, however, such permission will not be unreasonably withheld. All information will be subject to validation and verification requirements.

Content requirements for the Monitoring Reports are provided in the GHR Monitoring Report Template.

7.4 Monitoring Period

The monitoring period is the timespan over which the VVB assesses and confirms the Project's climate mitigation activities and resulting *ex-poste* GHG emission reductions/removals and other RF reductions per vintage year.

The monitoring period for projects assessed under this methodology shall be at most 5 years from the project start date or last date of verification.

During the monitoring period, the Project Proponent shall file an Incident Report if changes in processes, materials or activities are observed that could alter the level of RF reduction, describing the nature, timing, scale, and likely permanence of the change. An incident report must also be submitted to the Registry if actual RF reduction levels are shown to fall short of projections, whether due to a known loss event (i.e., a planned or unplanned change in process or activity) or due to any other cause describing the nature, extent, scope and expected permanence of the shortfall, and provide a root cause analysis of the source of the shortfall.

7.5 Project Validation and Verification

The Project shall be validated consistent with the requirements of Registry Standard Section 6.3.2.

The Project shall undergo verification within the monitoring period as defined above (Section 7.4).

Project validation and verification reports shall be provided to the GHR Registry by the VVB. Project validation and verification reports shall clearly describe the process of the assessment as well as the findings from the assessment. Specifications for the content of the validation and verification reports can be found in the GHR Validation and Verification Report Template.

8. CREDITING

8.1 Credit Issuance

Credits will be issued after independent validation and verification that the requirements of this methodology have been met for biogas capture and management. Credit issuance will be adjusted to reflect inherent uncertainties in measuring and monitoring the project activities. The adjustment will be based on the uncertainty assessment conducted as part of the project's quantification process and reported in the Monitoring Reports. Credit issuance will be adjusted to reach a 90% or greater certainty in the quantified CO_2e .

Once issued, the credits will be registered and tracked in the GHR Registry. The registry will record the details of each credit, including the project it was issued for, the date it was issued, the retirement date and retirement location, the amount of net CO_2e it represents, and associated documentation. All GHR Registry credits may be retired for carbon accounting only once, and all retirements are recorded in the GHR Registry.

8.2 Crediting Period

The crediting period for projects under this methodology is 5 years. The project may be renewed up to two times and must be re-validated for each crediting period.

8.3 Buffer Pool Requirements

Methane capture and combustion projects are not reversible and therefore are subject to the GHR Registry Standard's lower minimum buffer pool contribution requirement of 2% of the total credits issued. However, this buffer pool contribution percentage is subject to review on a project-by-project basis, based on the parameters identified in Appendix B, and may be increased as warranted.

Glossary

The definitions in this section apply to the terminology used in this methodology. A more comprehensive list of definitions can be found in the GHR Glossary of Terms.

Anaerobic digestion: The process by which biodegradable organic matter is converted to methane-rich biogas using microorganisms in a complex biological process.

Baseline Scenario: The business-as-usual scenario representing the project area environment and emissions in the absence of the project.

Biogas: The gaseous product of anaerobic digestion, comprised mainly of methane and carbon dioxide, with trace amounts of hydrogen sulfide and ammonia.

Climate forcer: any external driver of climate change that causes a positive or negative change in RF (e.g., an emission, substance, process, activity or change in state). *Source: Radiative Forcing Protocol.*

Manure management system: The system by which manure and its derivatives are collected, stored, treated, and used.

Project area: The area within the project boundary where project activities take place. The project area may be contiguous or be comprised of multiple areas within a larger defined boundary.

Secondary effects: Often termed "leakage", an increase in greenhouse gas emissions or other contributors to positive RF associated with a project due to material substitutions or changes in activities or operations outside the project boundary.

Acronyms and Abbreviations:

CDM: Clean Development Mechanism

FFR: Formulated feed rations

GHG: Greenhouse gas

GWP: Global Warming Potential Kg-dm: Kilograms dry matter

IPCC: Intergovernmental Panel on Climate Change

PDD: Project Design Document

RF: Radiative forcing

SOP: Standard Operating Procedure

UNFCCC: United Nations Framework Convention on Climate Change

VS: Volatile solids

Appendix A: Monitored Data and Parameters

Data/Parameter:	$VS_{LT,y}$
Data Unit:	kg dry matter/animal/year
Description:	Volatile solids for livestock <i>LT</i> entering the animal manure management
	system in year y
Source of data:	Farm measurements or published value from national source or IPCC
Description of	Only required when data from national published source are not available
measurement methods	or IPCC default value from 2006 IPCC Guidelines for National Greenhouse
and procedures to be	Gas Inventories Volume 4 Chapter 10 table 10 A-4 to 10 A-9 are not used.
applied:	
	When country-specific excretion rates are to be estimated from feed
	intake levels as indicated on page 11, via the enhanced characterization
	method (Tier 2) described in section 10.2 in 2006 IPCC Guidelines for
	National Greenhouse Gas Inventories Volume 4 chapter 10, parameters
	of GELT, DELT, UE, ASH and EDLT shall be monitored as detailed below to
	derive this value.
	When developed country values are to be used in the project, relevant
	parameters specified on page 12 shall be monitored/documented.
	If IPCC default values are to be adjusted for a site-specific average animal
	weight as specified on page 11, the average animal weight of a defined
	livestock population at the project site (W _{site}) shall be monitored as
	detailed below.
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	All measurements should be conducted with calibrated measurement
applied:	equipment according to relevant industry standards (refer to Section 7.2
	of this methodology "Documentation and Monitoring")
Comments:	

Data/Parameter:	$N_{DA,y}$
Data Unit:	Number
Description:	Number of days animal is alive in the farm in the year y
Source of data:	Farm records
Description of	The PDD should describe the system for monitoring the number of
measurement methods	livestock population. The consistency between the value and indirect
and procedures to be	information (records of sales, records of food purchases) should be
applied:	assessed sales, records of food purchases) should be assessed
Frequency of	Annually, based on monthly records
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	$N_{P,y}$
-----------------	-----------

Data Unit:	Number
Description:	Number of animals produced annually of type LT for the year y
Source of data:	Farm records
Description of	The PDD should describe the system on monitoring the number of
measurement methods	livestock population. The consistency between the value and indirect
and procedures to be	information (records of sales, records of food purchases) should be
applied:	assessed
Frequency of	Annually, based on monthly records
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	W _{site}
Data Unit:	kg
Description:	Average animal weight of a defined livestock population at the project
	site
Source of data:	Farm records
Description of	When IPCC values of VS are adjusted for site specific animal weight as per
measurement methods	Equation 3, sampling procedures can be used to estimate this variable as
and procedures to be	per the "Standard for sampling and surveys for CDM project activities and
applied:	Programmes of Activities"
Frequency of	Annually
monitoring/ recording:	
QA/QC procedures to be	(1)
applied:	
Comments:	For a non-binding best practice example, see Box 2 in AMS-III.D

Data/Parameter:	$BG_{burnt,y}$	
Data Unit:	m ³	
Description:	Biogas volume in year y	
Source of data:	Farm records	
Description of	The amount of biogas recovered and fueled, flared or used gainfully shall	
measurement methods	be monitored ex post, using flow meters. If the biogas flared and fueled	
and procedures to be	(or utilized) is continuously monitored separately, the two fractions can	
applied:	be added to determine the biogas recovered. In that case, recovered	
	biogas need not be monitored separately. The system should be built and	
	operated to ensure that there is no air ingress into the biogas pipeline.	
*	The methane content measurement shall be carried out close to a	
	location in the system where a biogas flow measurement takes place, and	
	on the same basis (wet or dry)	
Frequency of	Annually, based on continuous flow measurement with accumulated	
monitoring/ recording:	volume recording (e.g. hourly/daily accumulated reading)	
QA/QC procedures to be		
applied:		
Comments:		

Data/Parameter:	W _{CH4,y}
Data Unit:	%
Description:	Methane content in biogas in the year y
Source of data:	Farm records
Description of	The fraction of methane in the biogas should be measured with a
measurement methods	continuous analyzer (values are recorded with the same frequency as the
and procedures to be	flow) or, with periodical measurements at a 90/10 confidence/precision
applied:	level by following the "Standard for sampling and surveys for CDM project activities and Programme of Activities", or, alternatively a default value of 60% methane content can be used. The method chosen should be clearly specified in the PDD. It shall be measured using equipment that can directly measure methane content in the biogas - the estimation of methane content of biogas based on measurement of other constituents of biogas such as CO ₂ is not permitted. The methane content measurement shall be carried out close to a location in the system where a biogas flow measurement takes place, and on the same basis (wet or dry)
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	For a nonbinding best practice example of the application of the default
	value of methane content in biogas, see Box 3 in AMS-III.D

Data/Parameter:	T
Data Unit:	°C
Description:	Temperature of the biogas at the flow measurement site
Source of data:	Farm records
Description of	As per the relevant procedure in AMS-III.H, if used
measurement methods	
and procedures to be	
applied:	
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	For a nonbinding best practice example of temperature measurement,
	see Box 4 in AMS-III.D

Data/Parameter:	P
Data Unit:	Pa
Description:	Pressure of the biogas at the flow measurement site
Source of data:	Farm records
Description of	As per the relevant procedure in AMS-III.H, if used
measurement methods	
and procedures to be	
applied:	

Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	For a nonbinding best practice example of pressure measurement, see
	Box 4 in AMS-III.D

Data/Parameter:	FE
Data Unit:	%
Description:	The flare efficiency
Source of data:	Farm records or default value
Description of	As per the tool "Project emissions from flaring". Regular maintenance
measurement methods	shall be carried out to ensure optimal operation of flares
and procedures to be	
applied:	
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	Q _{manure,j,LT,y}
Data Unit:	Tonnes-dm/year
Description:	Quantity of manure treated from livestock type LT at animal manure
	management system j
Source of data:	Farm records
Description of	As the case on page 13, manure weight shall be directly measured or
measurement methods	alternatively manure volume can be measured together with the density
and procedures to be	determined from representative sample (90/10 precision). The quantity
applied:	of animal manure from different farms and different animal types shall be
	recorded separately for crosscheck. Recording of the baseline animal
484	manure management system where the animal manure would have been
CX	treated anaerobically is also required
Frequency of	Annually, based on daily measurement and monthly aggregation
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	$SVS_{j,LT,y}$
Data Unit:	tonnes VS/tonnesdm
Description:	Specific volatile solids content of animal manure from livestock type LT
	and animal manure management system <i>j</i> in year <i>y</i>
Source of data:	Farm records
Description of	If animal manure is treated in a centralized plant, as in the case on page
measurement methods	13, testing shall be performed according to the guideline in annex 2 of

and procedures to be	AM0073. It can be on sample basis by following the "Standard for
applied:	sampling and surveys for CDM project activities and programme of
	activities", with a maximum margin of error of 10% at a 90% confidence
	level
Frequency of	Annually
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	Q_{y}
Data Unit:	tonnes
Description:	Quantity of manure treated and/or wastewater co-digested in year y
Source of data:	Farm records
Description of	On-site data sheets recorded monthly using weigh bridge.
measurement methods	
and procedures to be	
applied:	
Frequency of	Monthly
monitoring/ recording:	
QA/QC procedures to be	Weighbridge will be subject to periodic calibration (in accordance with
applied:	stipulation of the weighbridge supplier)
Comments:	

Data/Parameter:	Q _{resWaste,y}
Data Unit:	tonnes
Description:	Quantity of residual waste produced in year y
Source of data:	Farm records
Description of	On-site data sheets recorded monthly using weigh bridge.
measurement methods	
and procedures to be	
applied:	
Frequency of	Monthly
monitoring/ recording:	
QA/QC procedures to be	Weighbridge will be subject to periodic calibration (in accordance with
applied:	stipulation of the weighbridge supplier)
Comments:	

Data/Parameter:	CT_y
Data Unit:	tonnes/truck
Description:	Average truck capacity for transportation
Source of data:	Farm records
Description of	On site measurement
measurement methods	
and procedures to be	
applied:	

Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	CT _{resWaste,y}
Data Unit:	tonnes/truck
Description:	Average truck capacity for residual waste transportation
Source of data:	Transport records
Description of	On-site measurement
measurement methods	
and procedures to be	
applied:	
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	DAF _w
Data Unit:	km/truck
Description:	Average incremental distance for manure and/or wastewater
	transportation
Source of data:	Transport records
Description of	On-site measurement, assumption to be approved by VVB
measurement methods	
and procedures to be	
applied:	
Frequency of	Annually
monitoring/ recording:	
QA/QC procedures to be	<i>p</i> -
applied:	
Comments:	

Data/Parameter:	DAF _{resWaste}
Data Unit:	km/truck
Description:	Average distance for residual waste transportation
Source of data:	Transport records
Description of	On-site measurement, assumption to be approved by VVB
measurement methods	
and procedures to be	
applied:	
Frequency of	Annually
monitoring/ recording:	
QA/QC procedures to be	
applied:	

Comments:	
-----------	--

Data/Parameter:	$MSF_{i,y}$
Data Unit:	unitless
Description:	Fraction of manure handled in system <i>i</i> in project activity in year <i>y</i>
Source of data:	Farm records
Description of	If animal manure is treated in different treatment systems manure weight
measurement methods	delivered to each system shall be directly measured or alternatively
and procedures to be	manure volume can be measured together with the density determined
applied:	from representative sample (90/10 precision). The quantity of animal manure from different farms and different animal types shall be recorded separately for cross-check. Recording of the baseline animal manure management system where the animal manure would have been treated anaerobically is also required
Frequency of	Annually, based on daily measurement and monthly aggregation
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	AL _I
Data Unit:	Days
Description:	Annual average interval between manure collection and delivery for
	treatment at a given storage device I
Source of data:	Farm records
Description of	It is to be used to calculate possible project emissions due the storage of
measurement methods	animal manure, as per page 16
and procedures to be	
applied:	
Frequency of	Annually, based on monthly records
monitoring/ recording:	
QA/QC procedures to be	<i>p</i> -
applied:	
Comments:	

Data/Parameter:	nd _y
Data Unit:	Days
Description:	Number of days that the animal manure management system was
*	operational
Source of data:	Farm records
Description of	If any farm has no operations on a given day it needs to be documented
measurement methods	(e.g. logbook) and taken into account for the calculation of BE _{ex post}
and procedures to be	
applied:	
Frequency of	Annually, based on daily records and monthly aggregation
monitoring/ recording:	

QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	MSF _I
Data Unit:	unitless
Description:	Fraction of volatile solids handled by storage device I
Source of data:	Farm records
Description of	It is to be used to calculate possible project emissions due the storage of
measurement methods	animal manure, as per page 16
and procedures to be	
applied:	
Frequency of	Monthly
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	$B_{O,LT}$
Data Unit:	m³ CH₄/kg-dm
Description:	Maximum methane production potential of the volatile solid generated
	for animal type LT
Source of data:	Published country values
Description of	Only when developed country values are to be used in the project, in
measurement methods	such a case relevant parameters specified on page 12 shall be
and procedures to be	monitored/documented
applied:	
Frequency of	Annually
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	<i>p</i> -

Data/Parameter:	GE_{LT}
Data Unit:	MJ/day
Description:	Daily average gross energy intake
Source of data:	IPCC
Description of	Only when country-specific excretion rates are to be estimated from feed
measurement methods	intake levels as indicated on page 11, via the enhanced characterization
and procedures to be	method (Tier 2) described in section 10.2 in 2006 IPCC Guidelines for
applied:	National Greenhouse Gas Inventories Volume 4 Chapter 10
Frequency of	Annually
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	DE_{LT}
Data Unit:	%
Description:	Digestible energy of the feed
Source of data:	Farm records or IPCC
Description of	If IPCC Tier 2 is used for VS determination. IPCC 2006 Table 10.2, Chapter
measurement methods	10, Volume 4
and procedures to be	
applied:	
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	UE
Data Unit:	Fraction of GE
Description:	Urinary energy, expressed as fraction of GE
Source of data:	Country-specific values or IPCC
Description of	If IPCC Tier 2 is used for VS determination. Typically, 0.04GE can be
measurement methods	considered urinary energy excretion by most ruminants (reduce to 0.02
and procedures to be	for ruminants fed with 85% or more grain in the diet or for swine). Use
applied:	country-specific values where available
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	(1)
applied:	
Comments:	

Data/Parameter:	ASH
Data Unit:	Fraction of the dry matter feed intake
Description:	Ash content of the manure calculated as a fraction of the dry matter feed
	intake
Source of data:	Country-specific values or IPCC
Description of	If IPCC Tier 2 is used for VS determination. Use country-specific values
measurement methods	where available
and procedures to be	
applied:	
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	ED_{LT}
Data Unit:	MJ/kg-dm
Description:	Energy density of the feed in MJ/kg fed to livestock type LT
Source of data:	Farm records

Description of	If IPCC Tier 2 is used for VS determination. IPCC notes the energy density
measurement methods	of feed, ED, is typically 18.45 MJ/kg-dm, which is relatively constant
and procedures to be	across a wide variety of grain-based feeds. The project proponent will
applied:	record the composition of the feed to enable the VVB to verify the energy
	density of the feed
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	EG _y
Data Unit:	MWh
Description:	Total electricity generated from the recovered biogas in year y
Source of data:	Farm records
Description of	Only required for project activities that utilize the recovered methane for
measurement methods	power generation as per Equation 14
and procedures to be	
applied:	
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	EE _y
Data Unit:	%
Description:	Energy Conversion Efficiency of the project equipment
Source of data:	Equipment manufacturer
Description of	As per Equation 14
measurement methods	Specification provided by the equipment manufacturer. The equipment
and procedures to be	shall be designed to utilize biogas as fuel, and the efficiency specification
applied:	is for this fuel. If the specification provides a range of efficiency values,
	the highest value of the range shall be used for the calculation
Frequency of	
monitoring/ recording:	
QA/QC procedures to be	
applied:	
Comments:	

Data/Parameter:	UF _b
Data Unit:	unitless
Description:	Model correction factor to account for model uncertainties in baseline
	emissions calculation
Source of data:	FCCC/SBSTA/2003/10/Add.2, page 25

Description of measurement methods	
and procedures to be applied:	
Frequency of	
monitoring/ recording: QA/QC procedures to be	
applied:	
Comments:	
	Pulolic

Appendix B. Project Risks for Consideration When Establishing Buffer Pool Contributions

The following is a list of potential events that could affect the validity of credits issued for projects in any given specific project category. Methodologies representing specific project types provide additional guidance where applicable.

Reversal Risks

Environmental Events that result in the release of sequestered carbon, including:

- Fire
- Drought
- Disease/Pests
- Flood
- Earthquake
- Storms
- Heatwaves
- Avalanche

Human activity that unintentionally or deliberately result in the release of sequestered carbon

- Land-use changes (e.g., deforestation, urban development)
- Project site abandonment (due to inadequate management, financial failure, socio-political instability, economic crises, community opposition, etc.)
- Failure of maintenance or oversight

Regulatory, Legal, and Compliance Risks

Regulatory Changes

- Alterations in national or regional regulations that invalidate or require re-evaluation of credit validity.
- Introduction of new performance or safety standards that retroactively affect previously verified projects.

Legal Disputes

- Litigation challenging the validity of credits.
- Ownership disputes over land or resources related to the project.

Compliance Failures

Failure to adhere to regulatory requirements after credit issuance.

Non-compliance with ongoing monitoring and reporting obligations.

Project Implementation and Verification Risks

Inadequate technical capacity of the VVB, VVB contractor, or project proponent

- Unintentional or deliberate misrepresentation of project outcomes by the VVB, VVB contractor, or project proponents
- Inaccurate or incomplete Measurement, Reporting, and Verification processes leading to issuance of credits that do not reflect actual carbon reductions or removals
- Inaccurate data collection methods or issues related to the security, accuracy, and storage of data over time

© 2024 Global Heat Reduction is an initiative of Scientific Certification Systems Inc.

SCS Global Services 2000 Powell Street, Suite 600, Emeryville, CA 94608 USA | main +1.510.452.8000 www.heatreduction.com